Bipolar disorder: clinical and neurobiological perspective

Dr Simon Surguladze

Plan

- Bipolar disorder: prevalence
- Intermediate phenotypes/endophenotypes
- Functional anatomy of regions involved in emotion processing
- Neuropathology of BPD
- Some candidate endophenotypes
- Our study

Lifetime prevalence

	MDD (%)	BPD (%)	Proportion of BPD
ECA study 1991	4.9	1.3	21%
NCS study 1994	13.1	1.8	12%
NCS-R study 2003	16.2	4.5	16-28%

Bipolar disorder II as a % of major depressive episodes

J. Angst Dialogues in Clin Neurosci 2008

Recent developments beyond DSM-IV criteria

- DSM-IV criterium of "period of expansive, elevated or irritable mood" presumes that subject is always aware of a mood change
- Behavioural changes could be better detected, eg
 - Periods of increased enterprise, increased activity
 - Less need for sleep than usual
 - > Talking more
 - Travelling more and doing more other things
 - Less fatigability

ICD-10

- persistent elevation of mood
- increased energy and activity
- marked feelings of well-being and both physical and mental efficiency
- increased sociability, talkativeness, overfamiliarity
- increased sexual energy
- decreased need for sleep
- irritability, conceit, and boorish behaviour may take the place of the more usual euphoric sociability

Bipolar disorder

Two main dimensions (+/- psychosis)

- Mood instability
 - ✓ Depression
 - ✓ Mania
 - ✓ Irritability
- Cognitive abnormalities
 - ✓ Lack of concentration
 - ✓ Memory deficits
 - ✓Impaired decision making

Endophenotype: internal, intermediate phenotype (i.e., not obvious to the unaided eye) that fills the gap in the causal chain between genes and distal diseases (Gottesman & Shields, 1973)

- Genetic vulnerability:
 - Concordance in monozygotic twins = 0.67
 - Concordance in dizygotic twins = 0.10-0.20
 - Relative risk in 1^{st} -degree relatives = 0.10-0.20

Intermediate phenotypes (endophenotypes) criteria

- Associated with illness in the population
- Heritable
- State independent, but might need to be elicited by a challenge
- Within families, endophenotype and illness cosegregate
- Is found at a higher rate in relatives than in a general population

Intermediate phenotypes (endophenotypes)

- Neurophysiological
 - Hyperactive amygdala in fMRI
- Neuropsychological
 - Emotion processing
- Cognitive
 - Sustained attention
- Neuroanatomical
 - Grey matter, lateral ventricles
- Biochemical
 - Altered dopaminergic transmission

Annual Reviews

Annual Reviews

Amygdala

- Lesions → emotional blunting, less fear perception
- Stimulation → fear like reaction (↑ corticosterone, heart rate)
- Cells in the amygdala respond selectively to faces and eye gaze direction in non-human primates

Ventral Striatum

- Functional Neuroimaging Studies: Ventral striatum – response to happy faces, to drugrelated pictures in drug addicts
- Ventral striatum is implicated in REWARD processing (reinforcing stimuli)
- Linking emotionally significant stimuli (+ and -) with behavioural responses
- Abnormal activity in depression (Anhedonia)?

Orbital and medial (ventromedial) prefrontal cortex

- Connections with amygdala
- Important for representation of the reward value of a stimulus to guide goal-directed behaviour
- Lesions → impairment of emotional expression identification (visual & auditory), disinhibition, impulsiveness, misinterpretation of other people's moods, impaired performance on gambling tasks

Ventromedial prefrontal cortex cont.

Example: Phineas Gage

Neuropathology of BPD

- Areas involved:
 - -ACC
 - OFC
 - DLPFC
 - Hippocampus
 - Amygdala

Neuropathology

- Main features
 - Reduced number or density of glia (Ongur et al., 1998), esp Oligodendrocytes myelination (Tkachev et al., 2003)
- Smaller and fewer neurons (Harrison 2002)
- Reduced synaptic markers (Harrison 2002; Eastwood & Harrison 2000)

Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder.

Strakowski et al Am J Psychiatry. 2002 Nov;159(11):18 41-7

Gray matter endophenotypes associated with genetic risks for schizophrenia and bipolar disorder

McDonald, C. et al. Arch Gen Psychiatry 2004;61:974-984.

White matter endophenotypes associated with genetic risks for schizophrenia and bipolar disorder

McDonald, C. et al. Arch Gen Psychiatry 2004;61:974-984.

Cognitive endophenotypes

 Sustained attention deficit found in remitted states, in mania and depression

 Executive function? Not consistently reported in manic and depressed states, not in remission

Endophenotype candidates: personality measures

 BPD relatives and patients had higher TEMPS score in dysthymia scale comp with NC (Burdick et al, 2008)

How do we measure brain functioning?

- Functional magnetic resonance imaging fMRI
- Positron emission tomography PET
- Single photon emission computed tomography SPECT

Neuroimaging studies

- Manic states
 - in decision making tasks: Dysregulation of medial and orbital prefrontal circuits
- Remission states
 - in Stroop tests: Dysregulation of ACC and orbital prefrontal circuits
 - Emotional faces, sustained attention tasks : overactive limbic areas

Neuroimaging studies

- Bipolar depression
 - Affect generation task: increased limbic and basal ganglia activity
 - Happy faces task: increased limbic activity

Our study

	Pts (20)	Rel (20)	Ctrl (20)	F	р
Age	42.7	43	41.9	0.04	0.95
Yrs	14.4	15.8	16	0.93	0.39
educ					
BDI	7.3	4.9	3.9	1.6	0.19
ASRM	3.4	2.2	1.9	1.4	0.25

Drapier et al, Biological Psychiatry 2008

fMRI experiments

Working memory

```
-X: A Y X I N X
```

- -1-back: A C C T U N
- -2-back: A C T C U N
- -3-back: A C T Y C U

- Emotional expressions
 - Happy faces
 - Fearful faces

Working memory task performance

*p < 0.05; a significant difference between bipolar patients and both relatives and controls for performance on 2-back and 3-back tasks

Working memory

BOLD response to WM task: 3 x 3 repeated measures ANOVA

BOLD response to WM task

+ significant difference between relatives and controls and # patients and controls in 1-back task (p<0.01);

*significant difference between relatives and controls in 2-back task (p=0.01).

Summary of working memory study

 Left prefrontal hyperactivation during WM task despite normal performance represents a potential intermediate phenotype for BPD.

Experiments with facial emotional expressions

Healthy controls

Relatives

Probands

Between-group difference: midbrain

Summary of happy faces experiment

- Midbrain was differentially hyperactive in the patient group vs. controls in response to intensively happy faces
- This may indicate dysregulation of rewardrelated (dopamine-related) system

Fear

Between-group difference

In response to 100% fear, both patients (p=0.04) and relatives (p=0.01) groups activate more than controls

Patients and relatives hyper-activate to mildly happy faces

Patients hypo-activate to mildly fearful faces

Gray matter endophenotypes associated with genetic risks for schizophrenia and bipolar disorder

McDonald, C. et al. Arch Gen Psychiatry 2004;61:974-984.

Summary of fearful faces experiment

- Patients and their relatives demonstrated hyperactivity in response to fearful stimuli in the right lingual gyrus
- This indicates the greater involvement of visual processing structures

General conclusions

- Differential activations in relatives and patients elicited by functional neuroimaging are taskspecific, rather than universally demonstrated in any condition
- Working memory experiments demonstrate hyperactivity (low efficiency) in left prefrontal cortex /ventro-lateral gyrus
- Emotion processing tasks reveal hyperactivity in cortical (lingual gyrus) and subcortical areas (midbrain)

A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder

Phillips, Ladouceur, Drevets, Mol Psychiatry 2008

Thank you for listening!